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https://www.immulab.fr/cms/index.php/team/tools/lab-tools/feature-selector

Team: Immunity & microbiota ecology
www.immulab.fr

INSERM UMR-S1135, Sorbonne University, Paris, France
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Glossary

• Variable = Parameter = Dimension ( = Column)
•  Feature = Predictor variable
• Response variable = Outcome Variable = variable to be predicted
• Observation = Sample = Point (= Row)
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p > n problem : more parameters than observations

Aim

For most regression models, it’s 
not possible to fit the regression 
hyperplane if the number of 
observations (points) is less 
than the number of parameters 
(dimensions)
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Redundancy problem:
 we’re interested to identify the most important features 

Aim
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Solution: Regularized models
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Lasso (L1 Norm)         Ridge (L2 Norm)

Regularized models
Cost Function = Loss Function + Penalty
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Regularized models
Cost Function = Loss Function + Penalty

Lasso (L1 Norm)            ElasticNet            Ridge (L2 Norm)
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Regularized models
Cost Function = Loss Function + Penalty

Lasso (L1 Norm)            ElasticNet            Ridge (L2 Norm)
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Regularized models

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.

“strict” 
“sparse”

“soft” 
“grouping”Lasso (L1 Norm)            ElasticNet            Ridge (L2 Norm)
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• regularized GLM (Lasso, Elastic-Net, Ridge) you choose alpha
• sparse PLS-DA (only Lasso)
• Multi-Block sparse PLS-DA = DIABLO (only Lasso)

Regularized models
Regularized = Penalized (any penalty)

 ≈ Sparse (only Lasso)
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Suitable methods
Based on response variable:
Categorical
•  binary (e.g. dead-alive)                                                     sPLS-DA and GLM
• multinomial (e.g. response - partial response - no response)     only sPLS-DA
Numeric  (e.g. CRP level in blood)                                                   only GLM 
Survival time
•  event + time until event                                                                   only GLM 

Based on predictors:
• Numeric + Categorical                                                                             GLM 
• only Numeric                                                                                      sPLS-DA

(categorical excluded automatically)12
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Data structure
Data - Monoblock
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Data structure
Data - Monoblock
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check that there are no duplicated rows or columns! 

ID variable is obligatory and 
has to UNIQUELY identify 
each observation after filters 
are applied!
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Data structure
Data - Monoblock
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Data structure
Data - Multiblock

Sa
m

pl
es

Sa
m

pl
eI

D

Description

Fe
at

ur
es

Feature table

Features
Block1 Block2 Block3

Bl
oc

k1
Bl

oc
k2

Bl
oc

k3

16

16



10/08/2024

9

Data structure
Data – block1
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Data structure
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key variables, combination of which should UNIQUELY identify each observation in each sheet! 
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Wide format of dependent data
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e.g. different timepoints for the same variable
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Wide format of dependent data
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e.g. different timepoints for the same variable
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Long format
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Other remarks

• Missing values are marked as ` `,`?`, `ND`, `nd`,`NA`,`na` or `#N/A` 
(excel-integrated NA notation)
• Check attentively all missing values for response variables (they will 

be ignored by the model if you don’t manage it yourself)
• Models require variability inside each group
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Clean the data
• Removes variables with no variation 
• Removes dates 
• Sets appropriate types to variables (categorical / numeric / logical)
• Problem – if looks numeric, but is to be better considered categorical
e.g. medical score going from 1 to 3 is either approximated as a number 
or as the group variable (giving 3 groups of patients). For small 
numbers of groups and in the absence of numerical relations between 
the score values.
• The user has to choose two heuristics – maximal nb of categories and 

digits for such variables to be considered as categorical
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Filter

• Select the ID variable (uniquely identifying each filtered observation)
• Select the response variable(s)
• Set filters for response variable(s) and predictors (same or separate)
• If separate filters are set, pay attention to whether you consider the 

response variable as the potential predictor or not ! (e.g. we might be 
interested to predict post-surgery CRP level with pre-surgery CRP 
level, but not with post-surgery CRP)
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Missing Values

Stringent  = exclude rows / columns having too many NA’s
Impute (= fill in NA’s in each variable) with : 
• central tendency – the mean, median or mode
• k Nearest Neighbors – the mean of k most resembling samples 
• other methods are to come…

Musolf, Anthony & Holzinger, Emily & Malley, James & Bailey-Wilson, Joan. (2022). What makes a good prediction? 
Feature importance and beginning to open the black box of machine learning in genetics. Human Genetics. 141. 
10.1007/s00439-021-02402-z. 34
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Missing Values

kNN – replace NA’s with  the mean of k most resembling samples 

Musolf, Anthony & Holzinger, Emily & Malley, James & Bailey-Wilson, Joan. (2022). What makes a good prediction? Feature 
importance and beginning to open the black box of machine learning in genetics. Human Genetics. 35
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Odds Ratios 

Preliminary analysis in case 
of binary response 

Variables are considered one 
by one, interactions are not 
taken into account 

attention to the x axis! 40
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GLM

Multiple Regression models can predict : 
• Linear – numeric outcome
• Logistic – binary outcome 
• Cox Proportional Hazards model ( Survival analysis ) – hazard 

function
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GLM

• Logistic – binary outcome 
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GLM

• Cox Proportional Hazards 
model ( Survival analysis ) – 
hazard function

http://www.sthda.com/english/wiki/cox-proportional-hazards-model
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GLM Assumptions
Linear regression:
• linearity of relationship
• independence of observations
• no perfect multicollinearity 
• (no endogeneity)

Regularization is more robust to violations of these assumptions:
• homoscedasticity (constant variance) 
• residual normality 
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GLM Assumptions

Logistic regression:
• linearity of log-odds
• independence of observations
• no perfect multicollinearity 

• large sample size
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GLM Assumptions

Cox PH model: 
• linearity of log-hazard
• independence of observations
• no perfect multicollinearity 

• proportional hazards (hazard ratios are constant over time)
• non-informative censoring
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Regularized GLM
Cost Function = Loss Function + Penalty

Lasso (L1 Norm)            ElasticNet            Ridge (L2 Norm)
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• the same scale – variables must be standardized, but no clear 
consensus on whether dummy variables ( indicators of levels of 
categorical variables) have to be standardized or not – try both ways

Regularized GLM Assumptions
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Model Robustness  

If I repeat the experiment, will I get the same result?
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Model Robustness  

Theoretical approach:

https://www.linkedin.com/pulse/bootstrapping-statistics-what-why-its-used-trist-n-joseph
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Model Robustness  

Theoretical approach:

https://www.linkedin.com/pulse/bootstrapping-statistics-what-why-its-used-trist-n-joseph
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Model Robustness  

Brute force simulation approach: Bootstrapping or Cross-Validation

https://www.linkedin.com/pulse/bootstrapping-statistics-what-why-its-used-trist-n-joseph

each of size = n

54

54



10/08/2024

28

55

55

56

56



10/08/2024

29

57

57

58

58



10/08/2024

30

Dimensionality reduction: Intuition

https://www.atmosera.com/blog/principal-component-analysis/

Different goals, but the same principle – find the “good perspective”

PCA – increase variation
PLS-DA – increase class separation

“New perspective’s” coordinate axes 
= Components 
= linear combinations of features
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sPLS-DA
Classification – prediction of categorical variable (binary or multinomial)

Assumptions:
• linearity – classes can be separated by linear combinations of variables
• no perfect multicollinearity
• independence of observations

• no strong outliers
• no extremely imbalanced classes

• only numeric predictors accepted 
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Model Robustness  

Brute force simulation approach: Bootstrapping or Cross-Validation

https://www.linkedin.com/pulse/bootstrapping-statistics-what-why-its-used-trist-n-joseph

each of size = (m-1)*n/m
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Multi-Block sPLS-DA (DIABLO)

• classification + integration of information from different blocks, takes 
into account inter-block interactions

Assumptions: in addition to sPLS-DA 
•  linearity– classes can be separated by linear combinations of variables 

inside and across blocks

• Contribution of variables from different blocks to the same component 
might mean the relation to the same phenomenon (e.g. pathological 
process, metabolic pathway)
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Choose the design value

• Based on PLS results and the aim of the study
• From 0 to 1
•  0 - maximize discriminative ability
• 1 - maximize correlation between datasets
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Final GLM
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ROC curves

* in case of binary response
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Threshold visualisation
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Download Selection
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Download Selection

94

94



10/08/2024

48

95

95

96

96



10/08/2024

49

Reproducibility
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Perspectives

• Other imputation methods 
• Basic visualization (e.g. boxplots)
• Interactive KM / Cox curves
• Set seed to reproduce randomness

• User-friendly tooltips and help windows
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Let’s try the app!
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https://www.immulab.fr/cms/index.php/team/tools/lab-tools/feature-selector
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