

Ontogeny, plasticity and physicochemical properties of human T cells

Martin LARSEN

www.Immulab.fr

INSERM U1135, CHU Pitié-Salpetrière, Paris, France

T-cell development in thymus

Figure 5-1 The Immune System, 2/e (© Garland Science 2005)

Outline of T-cell Development and Maturation

Events corresponding to each stage of T cell maturation from a bone marrow stem cell to a mature T lymphocyte are illustrated. Several surface markers in addition to those shown in the figure have been used to define distinct stages of T cell maturation. TCR, T cell receptor.

Removal of useless cells

Peptide is not recognised or irrelevant Thymocyte receives no signal, fails to be positively selected and dies by apoptosis.

WEAK OR NO SIGNAL

Thymic epithelial cell

Positive selection

Peptide is a partial agonist Thymocyte receives a partial signal and is rescued from apoptosis i.e. the cell is positively selected to survive and mature.

PARTIAL SIGNAL

Negative selection

Peptide is an agonist Thymocyte receives a powerful signal and undergoes apoptosis i.e. the cell is negatively selected and dies.

FULL SIGNAL

T cells mature in the thymus but most die there.

98% of cells die in the thymus without inducing any inflammation or any change in the size of the thymus.

Thymic macrophages phagocytose apoptotic thymocytes.

Organisation of TcR genes

TcR genes segmented into V, (D), J & C elements (VARIABLE, DIVERSITY, JOINING & CONSTANT) Closely resemble Ig genes (α ~IgL and β ~IgH)

This example shows the mouse TcR locus

TcR $\boldsymbol{\alpha}$ gene rearrangement by SOMATIC RECOMBINATION

Rearrangement very similar to the IgL chains

TcR β gene rearrangement SOMATIC RECOMBINATION

Estimate of the number of human TcR and Ig

Excluding somatic hypermutation

Element	Immunoglobulin		αβ TcR	
	Н	κ&λ	β	α
Variable segments	40	59	52	~70
Diversity segments	27	0	2	0
D segments in all 3 frames	Yes	-	Yes	-
Joining segments	6	9	13	61
Joints with N & P nucleotides	2	(1)*	2	1
No. of V gene pairs	2360		3640	
Junctional diversity	~10 ¹³		~10 ¹³	
Total diversity	~10 ^{16**}		~10 ¹⁶	

* Only half of human κ chains have N & P regions

**No of distinct receptors increased further by somatic hypermutation

Location of junctional diversity

CDR = Complementarity determining region

T cell receptor specificity

TCR finger printing

Plasticity Overlapping TCR repertoires between Th subsets

No Plasticity Distinct TCR repertoires between Th subsets

TCR finger printing

Conclusion

Peripheral Naive T cell precursors are able to adopt all Th profiles irrespective of antigen specificity

Larsen et al EJI 2011

To be elucidated....

Overlap between conventional T cells and thymus-derived regulatory T cells (nTregs)?

Larsen et al EJI 2011

Thymic selection of conventional T cells versus Tregs

Naturally occuring Tregs are derived from thymocytes with "high" affinity to self that escape elimination by negative selection through TGF- β signalling..

Jordan et al Nat Immunol 2001 Ooyang et al Immunity 2010

However, some studies indicate that Tregs can develop from T cells lacking a TCR. Thus suggesting that other factors than affinity plays a role.

Tuovinen et al JI 2008

Physicochemical differences between Tconv and Treg TCRs

nature immunology

Hydrophobic CDR3 residues promote the development of self-reactive T cells

Brian D Stadinski¹, Karthik Shekhar², Iria Gómez-Touriño³, Jonathan Jung¹, Katsuhiro Sasaki¹, Andrew K Sewell⁴, Mark Peakman³, Arup K Chakraborty^{5–10} & Eric S Huseby¹

Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3 β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β -chain variable region (V_{β}) family present in the TCR or the length of the CDR3 β . An index based on these findings distinguished V_{β}2⁺, V_{β}6⁺ and V_{β}8.2⁺ regulatory T cells from conventional T cells and also distinguished CD4⁺ T cells selected by the major histocompatibility complex (MHC) class II molecule I-A^{g7} (associated with the development of type 1 diabetes in NOD mice) from those selected by a non–autoimmunity-promoting MHC class II molecule I-A^b. Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.

Physicochemical differences between Tconv and Treg TCRs

Hydrophobicity differences between Tconv and Treg TCRs

Stadinski et al. Nat Immunol 2016

Po

YAe62b: high affinity (eliminated by neg selection) B3K506b: low affinity (differentiate to naïve cells)

Physicochemical differences between Tconv and Treg TCRs

YAe62b: high affinity (eliminated by neg selection) B3K506b: low affinity (differentiate to naïve cells)

Swapping P6P7 leads to inversion of self-reactivity

> Mouse and less so human Tregs favor self-reactive promotor P6P7

Stadinski et al. Nat Immunol 2016

Sorting of conventional and regulatory CD4+ T cells

Physicochemical differences between Tconv and Treg TCRs

Subset differences are primarily associated with hydrophobicity

NTW

- Conventional CD4+ T cells display functional plasticity at the clonal level.
- > It is still not determined if thymus-derived natural Tregs and Tconv are clonally related.
- Tconv and Treg subsets differ in physicochemical properties primarily through alterations in hydrophobicity.
 Hydrophobicity: Tregs > Tconv
- Our data do not confirm that P6 and P7 are particularly hydrophobic in Tregs. Indeed P5 and less so P6 seems to be more general sites of alteration.
- The result is confirmed in three individuals. Of note, the predictive signal is low and cannot be used at the clonal level (only population level).
- A larger number of individuals should be analyzed to identify interindividual variation (e.g. plot the correlation coefficient of each variable with PLS component 1 in a scatter plot to identify crossindividual robust predictive variables.

Funky Cells Tool Box software

